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Cosmological particle creation as above-barrier reflection: 
approximation method and applications 
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Fachbereich Physik der Universitat Konstanz, Postfach 7733, D 7750 Konstanz, West 
Germany 

Received 21 August 1978, in final form 6 December 1978 

Abstract. For the example of conformally-coupled massive Klein-Gordon particles in a 
Robertson-Walker universe the analogy between the Fock-space formulation of pair 
creation caused by the contraction and expansion of the universe on one hand and the pair 
creation in time-dependent electric fields as well as the reflection above a barrier in 
one-dimensional Schrodinger quantum mechanics on the other hand is described. This 
analogy is taken as the basis for the transcription of exact results and for the transcription of 
a WKB approximation method which allows an easy calculation of the relative probability 
of cosmological pair creation. For time-symmetric contraction-expansion behaviour the 
latter can be reduced to a real quadrature. Apart from the mathematical conditions for the 
application of the approximation procedure, the coherent calculation demands as an 
additional physical condition that the Cauchy hypersurfaces taken as the in- and out-regions 
admit free WKB particles. This implies conditions for the metric which are discussed in 
detail. Generalisations to other cosmologies and other particle equations are indicated. 
Several applications of the exact transcription procedure and of the approximation formu- 
lae are given, mainly with regard to the question of whether the spectrum of created 
particles is a thermal one. 

1. Introduction 

During the last five years there has been an ever increasing interest in the study of the 
creation of elementary particles by strong gravitational fields in the vicinity of black 
holes and during the early stages of the universe. For motivations, difficulties and a 
survey of the results see the review articles by DeWitt (1975), Parker (1977), Davies 
(1978) and Gibbons (1978). In order to better ‘understand’ a physical process like 
cosmological particle creation one needs-apart from the study of its underlying 
principles and main calculation schemes-an acquaintance with the results of as many 
particular examples as possible. Restricting the intended results to the number of the 
created particles and their spectrum, the corresponding rigorous calculations are often 
based on the explicit behaviour of exact solutions of the respective particle field 
equations and are therefore obtained only for appropriate special space-times in a 
laborious manner. Usually nothing is known about the stability of the characteristic 
traits of the primary situation. Therefore, to survey quickly the results of particle 
creation for a wide class of expansion laws one requires an approximation formula 
which is generally applicable and which can be handled easily. The purpose of this 
paper is (i) to draw attention to the analogies between cosmological pair creation, 
electric pair creation and above-barrier reflection which permit an understanding of 

0305-4470/79/081189+ 15$01.00 @ 1979 The Institute of Physics 1189 



1190 J Audretsch 

one process in terms of another, (ii) to describe a quasi-classical (WKB) approximation 
method for the calculation of the probability of pair production caused by the time 
dependence of cosmological metric fields and (iii) to indicate the usefulness of these 
considerations in applying them to several examples. The procedure has been sketched 
briefly by Audretsch (1978). 

To describe the essentials of the method we specialise to conformally-coupled 
massive Klein-Gordon particles in a three-flat Robertson-Walker universe with given 
(i.e. otherwise determined) contraction-expansion law R ( t ) .  ‘The metric remains 
unquantised and the back reaction of the created matter on the expansion is neglected. 
Particle creation is thereby represented by the fact that an in-vacuum contains 
out-states. The process of cosmological pair creation we are dealing with is described 
by a pure state (coherent superposition) and not by a mixture (density matrix) as it is if 
an horizon is present. 

The starting point of our considerations is the analogy between the Fock-space 
formulation of the cosmological creation process with the respective formulation of 
relativistic pair creation in time-dependent electric fields on one hand, and the analogy 
with the Hilbert-space formulation of the reflection above a barrier in the framework of 
non-relativistic one-dimensional Schrodinger quantum mechanics on the other hand. 
This analogy is described briefly in 9 2. If the cosmological contraction-expansion law 
does not approach a constant value asymptotically (statistically bounded behaviour), 
the problem of the appropriate definition of ‘positive’ frequency solutions, i.e. the 
problem of the definition of free particle states, and, correspondingly, the definition of 
the vacuum arises. It is shown in D 3 how different particle definitions answer differently 
the directly related additional question of whether or not a space-time admits Cauchy 
surfaces where the particles become free according to these definitions, i.e. where the 
interaction has finished (in- and out-regions). Based on the analogies described in 4 2, 
we discuss in 9 4 a method which allows the approximate calculation of the relative 
probability of pair creation in a given mode. In the case of a time-symmetric expansion- 
contraction behaviour of the metric of the cosmological space-time, the evaluation can 
be reduced to a real quadrature. 

The whole scheme can be generalised to field equations describing other sorts of 
particles and different types of couplings as shown in 0 5 .  The underlying space-time 
can be generalised to other types of Robertson-Walker universes and to anisotropically 
contracting-expanding universes. In 9 6 we give several applications of the tran- 
scription procedure and of the approximation formulae mainly in relation to the 
question of whether the spectrum of created particles is a thermal one. 

2. Cosmological particle creation, electromagnetic particle creation and non-relativis- 
tic above-barrier reflection 

We restrict our description to a cosmological background described by the Robertson- 
Walker metric with flat spatial sections? 

ds2 = d ?  -R2(t)(dXZ +dy2  +dZ2) (2.la) 

(2.1 b )  ds2 = R2(q)(dq2 -dX2 -dy2-dz2) 

t h = 1, c = 1. Signature of the metric tensor geB: (,- - - +). Ve and jla denote the covariant and ay and la the 
partial derivative. 
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and contraction-expansion law R ( q ) .  For other metrics see 0 5 .  Physical statements 
refer to cosmic observers with world-lines x = constant, y = constant, z = constant. 

To demonstrate an analogy and also for later use we write out some well known 
separations of different particle field equations. The conformally-coupled massive 
Klein-Gordon equation 

(V,V + m 2  + i R ) q  = 0 R = 6 ~ - ~  a2R/aq2 (2 .2 )  

leads after separation of the variables according to 

to the generalised oscillator equation with time-dependent frequency 

f ’ + w 2 ( 7 ) f = 0  w = ( R 2 ( q ) m 2 + k 2 ) 1 / 2  (2 .4 )  
with (8 = a/d7)  and f(7) complex. The measured momentum is p ( 7 )  = k / R ( q ) .  The 
Klein-Gordon scalar product 

taken with regard to the Cauchy hypersurface Z given by 7 = constant reduces to 

(fl,  f2) = i(f% -f” (2 .6)  
It is independent of the hypersurface Z for Klein-Gordon solutions f of (2 .4 ) .  The CP 
solutions are thereby normalised to S functions. 

On the other hand, the solution CP of the Klein-Gordon equation for a particle of 
mass m and charge e 

[(a, +ieA,)(a” +ieA”)+mZ]CP=O (2 .7 )  
in an external linearly-polarised time-dependent electric field E ( 7 )  = E(q)e ,  in 
Minkowski space-time (7 is taken as the usual time coordinate) is, after the separation 

(2 .8)  

(hx, by, B, = constant) also determined by an oscillator equation with time-dependent 
frequency 

f’+w2(Y))f=0 ( 2 . 9 a )  

w 2 = $ f  +p*:  + m 2 .  (2 .96 )  

We have chosen A” = (0, 0, A(q) ,  0 ) ;  accordingly we have E ( 7 )  = -A’(q) and p Z ( 7 )  = 
- e A ( T )  +constant. The scalar product 

1 
@=- 3 / 2  f(7) exp[*i(hxx + e y Y  +p*zz)], 

w 2 = ( p * , - e A ( q ) ) 2 + w 2  

CP.T(i 8’ - 2eA”)CP2 dZ, (2 .10)  

reduces with (2.8) for the Z hypersurface q = constant to 

(fl, f2) = i(fTf; - fT’ fZ) ,  (2 .11)  

which agrees with the form of (2 .6) .  It is independent of the hypersurface for 
Klein-Gordon solutions f of (2 .9 ) .  
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Finally the one-dimensional one-particle Schrodinger equation for stationary solu- 

(2.12) 

tions u ( x )  in a potential V ( x )  is of the form 

u ” ( x )  -t w 2 ( x ) u ( x )  = 0 w ( x )  = [2m(E - V ( X ) ) ] ” ~  

with ( )’ = a/ax. Taking q instead of x, equation (2.12) has the same structure as (2.4) 
and ( 2 . 9 ~ ) .  The product which agrees with (2.6) and (2.12) is the Wronskian 

(2.13) 

It is conserved for two Schrodinger solutions of (2.12). For u1 = u2 it represents a 
current. 

All three physical systems therefore agree with regard to field equations and scalar 
product if apart from q * x  one identifies the respective external fields according to 

R2(q)m2 t* ( - eA(q))2 * -2m V ( x )  (2.14) 

( u l ,  U?) = i(uTu; - uT’z.42). 

and the remaining parameters according to 

k2*p”: +& +m2*2mE, (2.15) 

which implies V s 0, E 3 0 for the Schrodinger problem. 

expanded according to 

1 

With regard to the process of particle creation the quantised Klein-Gordon field is 

.=-I d3k[at + f k ( q )  exp(ikx)+(bt)+ - fk  eXp(-ikX)] ( 2 . 1 6 ~ )  
(2.rr)3/2 

(2.2r)3/2 
1 @=-I d3k[urt  + f k ( q )  exp(ikx)+ (brt)+ -fk exp(-ikx)] (2.16b) 

where thefk(q) are solutions of the oscillator equations (2.4) or ( 2 . 9 ~ ) .  We assume that 
asymptotically for q + -cc and q + +CO an in-region Xi” and an out-region Xout exist 
which allow the existence of free particles. According to the definition of free particles, 
which will be specified in the next section, the solutions + f k ( v )  and * f k ( q )  are 
additionally specified by demanding that asymptotically for q * -cc and q + +cc 
respectively they fulfil particular conditions. They represent different Fock bases and 
define particles (plus sign) or antiparticles (minus sign) in the corresponding region. 
Because our definition of free particles will be based on an asymptotical WKB 
behaviour of f (q )  (see next section) we have asymptotically - fk = +fz. The relative 
probability p k  for the creation of a pair with opposite momentum (momentum 
parameter k) is then given by 

p k  = l@k12/lak12 = l(+fk, -fk)l2/1(+fk, + f k ) I 2  = l ( + f k ,  +fz)12/1(1fk, +fk)I2*  (2.17) 

Because the Bogolubov coefficients f f k  and p k  are connected by /cyk12 - = 1, the 
mean total number of pairs created per coordinate volume in the channel k is 

(Nk)= l P k l z  = p k / ( 1  - p k ) -  (2.18) 

The analogous process described by the Schrodinger equation (2.12) is the above- 
barrier reflection with potential V ( x )  s 0 where a stream of particles with energy E L 0, 
which is assumed to be incident from the right (i.e. x = +CO), is partly reflected back to 
x = +CO and partly transmitted to x = -a. Let ‘f be a solution of (2.12) normalised by 
means of (2.13) which shows for x -, --CO the same asymptotic behaviour as demanded in 
(2.16) above and let + f be a solution with this property for x -f +cc and let both be 
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propagating in the negative x direction. Above-barrier reflection can then be described 
by the following solution U which is also normalised by means of (2.13): 

u ( x )  = ' f ( x )  = A + f ( x ) + B + f r ( x ) .  (2.19) 

This normalisation implies IA12-IBIZ = 1. For the reflection coefficient p we obtain 

P = IBI2/IAl2= K+f, +P)I2/l(+f, +f)I2, (2.20) 

which formally agrees with (2.17). 
Comparing (2.20) and (2.17) we therefore obtain the following result. If one 

identifies apart from 7 - x  according to (2.14) and (2.15) and if one demands the same 
asymptotical behaviour of the solutions f(7) and u ( x )  in the in- and out-regions (thus 
defining the particle states and the vacua), the relative probability of pair creation in the 
cosmological and the electric field case on one hand and the reflection coefficient for 
above-barrier reflection on the other hand agree: 

(2.21) 

The same applies for ( N ) .  
This implies several advantages for the discussion of cosmological pair creation. (i) 

Rigorous results for pair creation in time-dependent electric fields and of above-barrier 
reflection already obtained for various potentials can easily be transcribed. (ii) 
Approximation methods elaborated in either of the two fields can simply be rearranged 
for the calculation of the probability of cosmological pair creation. (iii) Especially when 
looking at the equivalent situation of the more familiar above-barrier reflection one 
easily obtains a deeper intuitive insight into what is to be expected for cosmological pair 
creation caused by a particular contraction-expansion behaviour of a universe. 

p(cosmologica1) = p(e1ectric) = p (above-barrier reflection). 

3. Different concepts of free particles 

A central question of quantum field theory in curved space-time is 'what are particles?', 
i.e. what are the 'positive frequency' solutions in the space-time regions in question? 
For a survey of different approaches and references see Parker (1977) and Gibbons 
(1978). Since we are concerned with an in-out calculation based on Fock represen- 
tations we are interested only in the definition of free particles, by which we mean 
particles in a region in which the particle producing interactions have not yet started or 
are already finished. 

To define the vacuum we take a generally covariant WKB particle approach and 
demand that the wavefunctions in order to define free particles should be on the Cauchy 
hypersurfaces Xi" and Z""' respectively: (i) exact Klein-Gordon solutions (KG solu- 
tions) and (ii) exact solutions of the WKB equations (WKB solutions) also, thus 
restricting the Cauchy data for the Klein-Gordon field equations. A consequence 
justifying this definition physically is that in terms of the creation and annihilation 
operators corresponding to these free particles the Hamiltonian taken with regard to 
the preferred time coordinate becomes diagonal (Mamaev et a1 1976) and the solutions 
describing free particles lie future- or past-pointing on the mass shell (see below). This 
corresponds to a process of state preparation or observation which is based on an energy 
measurement whereby the energy-momentum condition fulfilled guarantees that the 
particles are not produced by the detector. For a less restrixtive WKB approach see, 
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e.g., Woodhouse (1976). For an extended WKB approach see below (Parker and 
Fulling 1974). Often it is only demanded that the states 'look like' WKB states. 

First, in order to compare in a covariant manner the KG and WKB solutions, we 
decompose 9 of (2.2) according to 

*==ab, v )  exp(*iW(x, 7)) (3.1) 

with real functions a(x ,  v )  and W(x, v). Then the Klein-Gordon equation (2.2) 
decomposes according to 

( 3 . 2 ~ )  aia1la + iR  - a (  W ' ~ V ,  - m 2 )  = 0 

1 
-(a2W'"),,, =o.  
U 

(3.26) 

The generally covariant WKB equations for Klein-Gordon particles, which after 
reintroducing h are formally obtained by letting h -+ 0, are: 

(3.3a) W'aWla-m = O  

( a 2  W'"),,, = 0. (3.36) 

Explicitly, for the line element (2.1) we obtain from ( 3 . 3 ~ )  after separating 
according to (2.3), i.e. restricting to WKB solutions which are momentum eigen- 
functions, 

2 

w, = - ( R 2 ( v ) m 2 +  k2)"2 = -w (3.4a) 

WI, = k, (3.46) 

and correspondingly from (3.36) 
1 1 

a =constant X = constant - 
R ( R 2 m 2 + k  ) RJW' 

(3.5) 

which implies 

alalla +iRa = RW3(Ra)" = R-3[ (R2m2 + k2)-1'41,r (3.6) 

with ( )' = a/av. 
The current ja = T ( a 2 / m )  Wl,, where the two signs correspond to the signs in (3.1), is 

because (3.36) is divergence free and tangent to a geodesic congruence. The Hamil- 
tonian-Jacobi equation ( 3 . 3 ~ )  guarantees that the four-momentum fulfils the energy- 
momentum relation, i.e. that the solution lies on the mass shell. The different signs +/- 
in (3.1) correspond to future/past pointing j" and pa and accordingly represent 
positive/negative frequency solutions. The corresponding solutions + f ,  + f / -  f ,  -f are in 
the region (*), where they represent free particles/antiparticles given by 

1 
+ f ?  ' f / - f ,  - f  ( 2 m w ( v ) )  1,2 exp(-/+i I w ( 7 )  dq). (3.7) 

Note for the following that for the particular asymptotic hypersurfaces Z charac- 
terised by R 2  + 0 or R 2  -+ CO we have I Q  I + 00 or la1 -+ 0. Note additionally that in order 
to represent the energy-momentum relation (Hamilton-Jacobi equation) for any 
particular time, we have to use as the WKB equation the equation ( 3 . 3 ~ )  without any 
multiplication by a function of a. Therefore, with regard to the definition of free 
particles, the demand that the wavefunctions in the decomposition (2.16) are KG 
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solutions at all Cauchy hypersurfaces and additionally fulfil exactly the WKB equations 
at the Cauchy hypersurfaces Xi" and Xout implies (compare ( 3 . 2 ~ )  and (3.3a)) that 
a-'(al"il, +kR) = 0 at Xi" and Xout. This covariant condition results independently of a 
possible multiplication of the Klein-Gordon equation (3.2) by a factor. 

We assume that the other conditions necessary for describing particles (for example, 
being an orthonormal basis) are fulfilled at Xi" and Eout. We then have the following 
definition of free particles together with the related condition a space-time region has to 
fulfil in order that the particle-producing interaction is absent, and accordingly the 
concept of free particles makes sense at all. 

Definition : (KG + WKB) particles. A Klein-Gordon solution of (3.2) goes over into 
an exact WKB solution (i.e. fulfils (3.3)) at C'" and Zout. The corresponding necessary 
condition for the space-time is 

(Here 
described by qi"/vout = constant including ~ ~ ~ / v ~ ~ ~  + -/+m.) 

formation of the oscillator equations (2.4), (2.9a) and (2.12): 

refers to the space-time (2.1) with Xin/Xout being Cauchy hypersurfaces 

The approximation procedure of the next section is based on a Liouville trans- 

(d2f/dv2)+w2(T)f = 0. (3.9) 

This transformation has also been used as starting point for a particle definition. The 
transformation (Liouville 1837) 

f + f z = J - f  v + m =  J u d v  

leads to an equivalent new oscillator equation t 

(3.10) 

with 

3 1 U') 
E =-- d2 ( - ',> =----- 4 w 4  2 @ 3 '  

w 3 l 2  dT2 (3.12) 

This transformation can correspondingly be repeated, always leading to oscillator 
equations of type (3.11) with a frequency of the form ui  = 1 + E , .  Thereby n is usually 
counted in steps An = 2 (Chakraborty 1973). Putting the respective E, equal to zero 
one obtains different levels of a WKB-type approximation for (3.9). Comparing (2.3), 
(3.1), (3.4) and (3.5) with the solution f 2  or f of (3.11) or (3.10) for g 2  = 0 one verifies 
that this f agrees with the WKB solution in the sense used above. The conditions E" = 0 
again imply conditions for the space-time. For n = 2 we have with (2.4) and (3.13), 

(3.13) 

t For a more general transformation which preserves the form of the oscillator equation see Froman and 
Froman (1965). 
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In the framework of adiabatic regularisation (Parker and Fulling 1974, Fulling et a1 
1974) the definitions of particles are based on functions which fulfil the oscillator 
equation with E" = 0 for a certain n. With regard to the question of whether a Cauchy 
hypersurface admits free particles, the main objection against these definitions, apart 
from being non-covariantly formulated, is that they are based on an equation for f ( q )  
instead of the physical function as in the definition above. In fact, for €2 = 0 only 
equation (3.1 1) with the left side multiplied by a time-dependent factor is equivalent to 
the WKB equation. Because of this there is for R 2 + 0  even for n = 2 a difference 
between e2 = 0 on one hand and (3.8) on the other. The condition (3.8) is stronger. The 
difference between the two conditions is illustrated physically by the example in 0 6.6 
where, demanding €2 = 0 only, the big bang would represent an in-region with no 
particle production. For R 2 +  00 the conditions (3.8) and E:! = 0 both agree. 

That the wavefunctions of free particles should solve the Klein-Gordon as well as 
the WKB equations has been stated by Audretsch and Schafer (1978b), while the 
(KG+ WKB) particle definition has been used implicitly by Schafer (1978), who 
showed that, according to this definition, in the DeSitter space no free particles are 
possible time-asymptotically, i.e. that the particle-producing interaction continues. In 
the framework of this paper the condition e2 = 0 is essential for the following approxi- 
mation method. 

4. Approximation method to calculate the pair creation probability 

The approximation method to calculate p of (2.27) is a quasiclassical approach which is 
based on the comparison of WKB-type solutions of the oscillator equation (3.9) in an 
in- and an out-region. The discussion of the definitions of the preceeding chapter is 
necessary because, before applying the resulting approximation formula, it has to be 
proved whether or not the WKB particle concept can sensibly be applied asymptotically 
according to one of the definitions. The latter presupposes (3.8), in contrast to the 
approximation formula below for which c2 = 0 will have to be fulfilled. Following the 
analogies of 0 2, we transcribe for cosmological pair creation by identifying according to 
(2.14) and (2.15) a result which has been derived and discussed widely in the framework 
of above-barrier reflection and of particle creation by time-dependent electric fields. 

The solution of (3.9) has the general form 

A(s)-exp(-i 1 J odq)+B(s)-exp(+i 1 J w ds) .  (4.1) 

a? Jwo 
If at 77 +*a free particles exist according to 0 3, the situation of pair creation 
(above-barrier reflection, 77 = x )  is described by A = 1, B = 0 at 7 + -a and p = IB/AI2 
at .rl+ +a. In the framework of the WKB approximation one cannot determine p by 
moving along the real axis. To connect the asymptotic solutions one therefore moves in 
the complex 77 plane. Thereby the behaviour of the differential equation at the zeros of 
s, which are called transition points (turning points, reflections points), needs special 
consideration because of the singular behaviour of c2. In contrast to barrier trans- 
mission we have in our case complex transition points representing the fact that the 
reflection is classically impossible. Without repeating its proof, we state the following 
theorem which allows the approximate determinationt of p. 

t For a different method to treat particle creation or reflection above a barrier see Migdal (1977). 
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Theorem : Approximation formula. We assume (i) that the criterion for the appli- 
cability of the WKB approximation to the oscillator equation (3.9) with 0‘ = 
R’(g)m’+k’ is everywhere fulfilled on the real axis (take, e.g. € 2 ~  l ) ,  (ii) that the 
solutions of (3.10) become exact WKB solutions for r ]  -* fa, i.e. E’+ 0, (iii) that R 2 ( g )  
is an analytic function in the complex g plane and (iv) that the complex transition point 
qo (where w 2 ( g o ) = O )  nearest to the real axis is a simple root of U’, i.e. 
C ( g  - q0)”’, C # 0 for g + g o  and that all other zeros and singularities of w’ lie far 
away from the real axis. 

Then p is given approximately by 

p = exp(-4 Im I) (4 .2a)  

with 

(4 .2b)  

where Im go 3 0 and gl is a point on the real axis with g1 G Re go. Because of (i), the 
approximation is valid for Im I >> 1 or, equivalently, p << 1. 

This theorem has been derived by Pokrovskii and Khalatnikov (1961). For a more 
heuristic illustration see Landau and Lifshitz (1965). Using a different approach, the 
result has also been obtained by Froman and Froman (1965). Applications to electric 
pair creation are discussed by Popov (1972) and Marinov and Popov (1977). Since w’ is 
real on the real axis we have w z ( g o * ) = [ w 2 ( g o ) ] *  so that there are two complex 
conjugate zeros: qo with Im 702 0 and 7:. The formula (4.2) takes into account only 
the contribution from the nearest transition point and its complex conjugate. If there 
are more transition points their contributions to p are additive. For further details see 
Pokrovskii and Khalatnikov (1961). An essential statement of the theorem is the term 
1 before the exponential in (4 .2a) .  The condition (iv) is most likely fulfilled for 
cosmological pair creation. If w -* C(g  - C f 0 ,  cy > 0 for g -* g o ,  the right-hand 
side of (4 .2a)  is to be multiplied by 4 cos2(.rr/2a). 

Because w of (2.4),  (2.9) and (2.12) is a real square root on the real axis we find after 
cutting the complex plane from go* to go that 

‘lo 

4 Im I = 2 Im I, w dq =Im fc w dg  (4.3) 

where in the first integral the path of integration lies on the left-hand side of the cut and 
the path C surrounds the cut clockwise on the upper sheet. In favourable cases the 
second integral may be evaluated using the residue theorem. 

For special cosmological cases the calculation of p can be further simplified. 
Restricting our considerations to a cosmological evolution with a time-symmetric 
contraction-expansion law, it is useful to describe this in the form (symmetry axis: g = 0) 

R’(7)  = g 2 ( q ) + R :  R: = R2(q  = 0) (4.4) 

by means of a time-antisymmetric function d ( g ) :  

d(7 )  = - R ( - g )  (4 .5a)  

ad/ag > 0 ,  (4.56) 
where for (4.56) we have additionally assumed af i /ag # 0. For Ri = 0 a singularity 
appears at q = 0. Without difficulty we can enclose R i  = 0 as a limiting case in our 
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considerations by describing the corresponding ‘passage through the singularity’ of the 
Klein-Gordon test field by means of a conformal method as has been done by 
Audretsch and Schafer (1978a), though from the physical point of view it is doubtful if 
the approximation of unquantised geometry can be maintained if the curvature radius 
becomes very much smaller than the Planck radius. 

Because of the structure (2.4) of w we can combine k 2  and R:  by 

c2= k2+R:m2 w Z = d 2 m 2 + 1 2 .  (4.6) 

In the contour integral of (4.3) we now transform the complex variable according to 
7 + U = ( m / f ) d ( q ) ,  6> 0, which implies transition points at U = *i. As a consequence 
of (4.9, the functions d’ and d’ are real on the imaginary axis also. Therefore after 
rotating the imaginary axis by the transformation U + U = -iu on the real axis, we find 
that the contour integral reduces to a real quadrature 

212 (1 - u 2 p 2  
m RYu) 

4 I m I = -  -du (4.7) 

where the real function d’(u) is obtained from d’(7) by substituting the inverse of the 
function U = -i(m/C)d(T). It may be easier after substituting 17 =i( to invert U = u(.f),  
thus obtaining ( = ((U). One then has 

1 m d.f 
R‘(u)  k dv 
-=-a?-. (4.8) 

5. Generalisations 

For a wide class of space-times separable coordinate systems can be found with regard 
to which the time dependence of the minimally- or the conformally-coupled Klein- 
Gordon equation reduces to an oscillator equation with variable frequency (Dietz 
1976), so that the approximation formulae of the preceeding section can be applied if 
in- and out-regions with free particles exist. Before applying the scheme above one has 
to see if the whole space-time is covered by the respective coordinate system and if, for 
example by the existence of horizons, pure states may be changed into superpositions so 
that our coherent calculation does not apply. 

Particular examples leading to an oscillator equation (3.9) are the conformally- 
coupled Klein-Gordon equation in anisotropic, homogeneous cosmologies (Kasner 
universes) (Zeldovich and Starobinskii 1972) and the conformally- or minimally- 
coupled Klein-Gordon equation in Robertson-Walker universes with non-vanishing 
positive or negative three-curvature (Parker and Fulling 1974, Mamaev et a1 1976). 
For later use we note that for the three-flat Robertson-Walker metric (2. l a )  the 
minimally-coupled Klein-Gordon equation (i.e. (2.2) with 8 = 0) leads after intro- 
duction of 

T = [ ‘R( t ‘ ) -3  dt’ (5.1) 

for the time-dependent part g ( r )  of the separation W = g(7) Y ( x )  to the oscillator 
equation 
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The creation of Dirac particles by the expansion-contraction of a Robertson- 
Walker universe is characterised by the fact that there is no interaction with the spin so 
that one again obtains, after appropriate separation an oscillator equation but with 
complex frequency (Audretsch and Schafer 1978a): 

f'+ ( R 2 m 2  + k2* imR')f = 0. (5.3) 

In addition, there is a close similarity with the case of fermions in linear time-dependent 
electric fields for which the separation leads to 

f " + [ ( f i l  - eA) '+ f i f  +f i :  + m 2 T i e A ' l f = 0  (5.4) 

so that again one may try to transcribe exact results using the identifications (2.14) and 
(2.15). Because of the complex oscillator frequency (equivalent to a complex barrier) 
the results of this section cannot be used directly. An approximative treatment of (5.4) 
has been given by Marinov and Popov (1977). 

6. Applications 

To indicate the usefulness of the preceeding considerations and to show that there is a 
wide range of applications for the exact correspondences of § 2 and the approximation 
formulae of 0 4, we discuss several problems which are related mainly to the question of 
under what condition the spectrum of the created Klein-Gordon particles is a thermal 
one. We therefore partly reproduce relations published already and partly obtain new 
results. 

6.1. Conformal coupling, R 2 ( q )  = b 2 T 2 +  Rz (exact result) 

For the contraction-expansion law 

R 2 ( v )  = b2V2+ RE b =constant --CO < 17 < +a, (6.1) 

which represents a radiation-dominated universe with avoided singularity if Ri  # 0, 
none of the conditions for free particles is fulfilled for finite 7 ;  we also have e2 # 0. 
Because all conditions are fulfilled for 7 +*a we have to take this as the in- and 
out-region. Then we can transcribe according to § 2 an exact result for particle creation 
in the uniform electric field E in the z direction (A2 = E27') 

(N)(electric) = exp[--.rr(m2+fi: + B : ) / ~ E I  (6.2) 

obtained by means of an asymptotic WKB concept of free particles (Nikiskov (1970). 
Incorporating RE according to (4.6) we find with (2.14) and (2.15) for the number of 
pairs (!) created per unit coordinate volume with mode parameter k out of [k, k +dk]  

(6.3) 

Introducing the physical momentum p = R-'(V)k as measured by the cosmological 
observer and Boltzmann's constant kg we have 

(Nk)(cosmological) = exp[-.rr(k2 + R:)/mb]. 

(Nk)(cosmological) = exp - - - exp(k/ kg T) ( :i k,'T) (6.4) 
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which represents a non-relativistic thermal spectrum with temperature T and chemical 
potential p as given by 

T = b / 2 n R 2 k ~  p = -b-’nmRikBT. (6.5) 

For this interpretation we have assumed that the created pure state takes part in a 
thermodynamical process. The expression (6.4) has also been obtained as an exact 
result by Audretsch and Schafer (1978b). 

6.2. Conformal coupling, Eckart-Sauter potential (exact result) 

Another transcription of an exact result can be carried out for the Eckart potential 
(Eckart 1930) 

6 = -exp(2nx/l) A, B =constant. (6.6) 

We restrict our considerations to the case B = 0, which is often attributed to Sauter 
(1932): 

= $A(1+ tanh(nx/l)). 
A 

1 +exp(-2nx/l) 
V(x) = 

It represents a step of high A smoothed out between x = -1 and x = +1. For above- 
barrier reflection (E B 0, E BA) the reflection coefficient is 

cosh[2n(a -@)I- 1 - sinh’ n(a - p )  
cosh[2n(a+P)]-l-sinh2 n ( a + p )  P =  (6.8a) 

where 

a = 1(2mE)’/’/2n p = 1[2m(E.-A)]”*/2r. (6.86) 

For the case B # 0 see Eckart (1930). To obtain the corresponding exact result of 
particle creation in a universe with a step-like expansion law one has to rewrite (6.8) by 
means of (2.14) and (2.15). The corresponding result has also been obtained by explicit 
calculations by Bernhard and Duncan (1977). 

6.3. Conformal coupling, R2(q)  = b 2 q 2 +  R i  (approximation) 

To test the results of 0 4 we treat the contraction-expansion law (6.1) approximately by 
means of (4.7). Because of 

we obtain an approximation for pk << 1 : 

P k  ==exp[-n(k2 + R;)/bm], (6.10) 

so that with (2.20) the approximate result for (Nk) agrees with the exact result (6.3). 
This reflects the fact that a WKB approximation method gives exact results for the 
parabolic potential. 
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6.4. Stability of the result 

Because the approximate result for (Nk) agrees with the exact one and because the 
approximation formulae of P 4 are obtained in leaving the real 77 axis and connecting the 
in- and out-region in passing along in a curve through the complex 7 plane, we may 
infer the following statement concerning the stability of the result. If a contraction- 
expansion law R 2 ( q )  has approximately parabolic shape -v2 in the region of the 
complex 77 plane which contains the transition point and if R2(q)  reaches R2(*oo) 
smoothly, the result (6.3) for (Nk) << 1 representing a non-relativistic thermal spectrum 
will be a very good approximation. 

On the other hand, to obtain the exact structure of a non-relativistic thermal 
spectrum it needs a dependence of k of the form 

( N k ) =  exp(-k2C2) ac/ak = 0. (6.11) 

Assuming conformal coupling and a time-symmetric contraction-expansion behaviour 
we obtain from (4.7) that (6.1 1) is only fulfilled if 

(6.12) 

where, because of (4.8), the function d’(v) is in general dependent on k if d’ # constant. 
This verifies the conjecture of Audretsch and Schafer (1978a) that the radiation- 
dominated universe with (6.1) is the only one for which the created particles have 
exactly a non-relativistic thermal spectrum for all values of k. 

6.5. Minimal coupling, vanishing mass 

Changing to minimally-coupled particles (equation (5.2)) with vanishing mass m = 0, it 
has been found by Parker (1977; see also Parker 1976) that the expansion law 

~ ~ ( 7 )  = a:+ao4 exp(T/s) (6.13) 

implies for the created particles a relativistic thermal spectrum 

pk = exp(-4rsa:k). (6.14) 

Parker (1977) conjectured that the relativistic thermal structure 

p k  = exp(-kC2) aC/ak = o (6.15) 

may hold for rather general expansion laws R(T) .  We can make this precise as follows. 
Comparing (5.2) with (2.4) we have w 2  = R 4 k 2  and T instead of 77. Together with (4.2) 
this implies the approximation 

p k  =exp( -k R2(7)  dT) (6.16) 

and therefore the structure (6.15) whenever the approximation is possible according to 
the conditions of 0 4, i.e. if p k  << 0, for instance because of large k. This result is easily 
generalised to the case of anisotropic expansion where the different components of k 
obtain different factors. 
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On the other hand, it may not be concluded from this that the relativistic thermal 
structure (6.15) is in general valid for small k as well. To give a counter example we 
choose 

R4(7) = A27' + BZ A, B = constant, (6.17) 

thus reducing the calculation to the case solved exactly with (6.1). Comparing the 
respective oscillator frequencies (Ro = 0), we obtain from (6.3) as an exact result for the 
expansion law (6.17) 

"> = exp[(-.rrB2/A)k1, (6.18) 

which agrees rigorously with a relativistic thermal spectrum only for large k. 

6.6. Conformal coupling, R = at (approximation) 

Returning to conformal coupling we treat the expansion law 

R ( t )  = at a = constant 0 < t < 00 ( 6 . 1 9 ~ )  

R(7)) = exp(a7)) -a3 < 7) c +a. ( 6 . 1 9 ~ )  

For t + 0 or 7) + -00, according to (3.8) no (KG + WKB) particles exist so that there is no 
asymptotical in-region with free particles. On the other hand, according to (3.13) we 
have ez + 0 so that at thesingularity r -* 0, i.e. in the region of strongest gravitational 
interaction, Liouville (€2 = 0) particles are possible. Thus justifies again that the 
definition of free particles should not be based on €2  = 0 (cf 9 3). Nevertheless, because 
€2'0 for 77 -* -00, we can formally (!) apply the approximation formulae of 0 4. 
Evaluating (4.26) explicitly in the complex plane we obtain by ( 4 . 2 ~ )  

P k  -exp(-2.rr/a)k = exp(-2.nR(v>p(q>/a), (6.20) 

which is valid for large k. This result has also been found by path-integral methods by 
Chitre and Hartle (1977) and was interpreted by them as a relativistic thermal 
spectrum. Apart from the fact that there is no interaction-free in-region, an objection 
against this interpretation is that because p(7)  = R-'(v)k in the out-region with R +CO, 

all momenta become non-relativistic. 
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